COMPLIMENTARY CE

Fundamentals of Exercise Physiology and T1D

Jointly Provided by

INTRODUCTION TO PHYSICAL ACTIVITY AND T1D

Many People with T1D Have Lower Levels of Physical Activity

Study	Study Type	% Study-Defined Low Levels of Physical Activity
DCCT	Retrospective analysis	19%
EURODIAB	Prospective cohort study	36%
FINNDIANE	Cross sectional	44%
DPV Database	Cross sectional	63%

Makura CB, et al. *BMC Endocr Disord*. 2013;13:37; Tielemans SM, et al. *Diabetologia*. 2013;56:82-91; Waden J, et al. *Diabetologia*. 2015;58:929-36; Bohn B, et al. *Diab Care*. 2015;38:1536-43.

ADA Aerobic Exercise Recommendations

- Adults: 150 minutes/week of moderate-to-vigorous physical activity (brisk walking or greater), with no more than 2 days off in a row plus strength training 2-3 x/week on nonconsecutive days. For younger and more physically fit individuals, shorter durations (75 min/week) of vigorousintensity or interval training may be sufficient.
- Youth: 60 minutes/day of moderate-to-vigorous physical activity (420 min/week), including vigorous-intensity activities 3 or more days/week and strength-building activities (for muscle and bone) 3 or more days/week.

Benefits of Exercise in Diabetes

- Weight management, increased lean body mass
- Reduced cardiovascular risk factors
 - Lower blood pressure
 - Lower unfavorable and higher favorable lipids
- Improved HbA1c and insulin sensitivity

- Reductions in microvascular complications
 - Retinopathy
 - Microalbuminuria
- Psychological benefits
 - Improved sense of well-being
 - Improved self-esteem

ADA. Diabetes Care. 2018;41(Suppl 1):S38-50; Bohn B, et al. Diab Care. 2015;38:1536-43.

1

Attitudes and Barriers to Exercise Among People with T1D Are Multifactoral

- Health and medical
 - How blood glucose could be affected by activity
 - Hypoglycemia
 - Complications due to diabetes
 - Other non-diabetes-related health problems
- Time, work, and lifestyle
 - Demands on their time is greater barrier than diabetes for most people

- Demands in the home or caring for children or relatives
- Erratic lifestyle—a perceived lack of time
- Social and personal
 - Lack of motivation to exercise
 - Embarrassment or fear of failure
 - Body image concerns
- Environmental
 - Access/cost of sports facilities
 - Weather

Factors that Contribute to Increased Hypoglycemia During Exercise in T1D

- Absence of physiologic decrease in insulin secretion
- Increase in absorption of insulin from subcutaneous tissue
- Increase in rate of glucose transport into muscle
- Blunting of counter-regulatory hormone responses (especially with sleep)
- Diminished hepatic glucose production

JORF PEAK
TID Reformance in

Riddell M, et al. Lancet Diab Metab. 2017;5:377-90.

KEY POINT #1
DIFFERENT FORMS OF EXERCISE HAVE
DIFFERENT PHYSIOLOGIC EFFECTS

Resistance Exercise Presents an Opportunity for Protection Against Hypoglycemia

- Individuals who develop exerciseassociated hypoglycemia may benefit by adding resistance training before aerobic activity
 - Attenuates declines in glucose
 - May lower reliance on glucose supplementation
- Individuals with exercise-associated hyperglycemia may benefit from adding aerobic exercise before resistance training

Yardley JE, et al. Diabetes Care. 2012;35:669-75.

†Significant difference from baseline (P < .05) *Significant difference from resistance exercise (P < .05)

KEY POINT #2 PHYSIOLOGIC MECHANISMS MAINTAIN TIGHT GLUCOSE LEVELS DURING EXERCISE IN THE ABSENCE OF DIABETES

KEY POINT #3
EXERCISE IN T1D LEADS TO GLUCOSE IMBALANCE DUE
TO ALTERED PHYSIOLOGIC RESPONSES

Exercise in T1D Can Lead to Hypo- or Hyperglycemia **Because of Impaired Physiologic Response**

- Euglycemia

 - ↑ counter-regulation (glucagon, growth hormone, cortisol, catecholamines)
- Hypoglycemia
 - Relative hyperinsulinemia
 - Impaired counter-regulation
- Hyperglycemia
 - Relative hypoinsulinemia
 - — ↑ counter-regulation (catecholamines,
 - Anaerobic metabolism (lactate production)

Chu L, et al. Phys Sportsmed. 2011;39:64-77.

Aerobic Exercise Without Adjusting Insulin Promotes a Variable Drop in Glucose and May Cause Hypoglycemia

The Diabetes Research in Children Network (DirecNet) Study Group, et al. Diabetes Care. 2006;29:2200-4.

Martin-Timon I, et al. World J Diabetes. 2015;6:912-26.

JDRFPEAK
TID Reformance in Exercise and Knowledge

17

GLUCOSE UPTAKE IS HIGH DUE TO BOTH INSULIN ACTION AND MUSCLE CONTRACTION

EXERCISE HAS BOTH IMMEDIATE AND DELAYED EFFECTS ON BLOOD GLUCOSE

KEY POINT #6 THE BODY ADJUSTS ITS SOURCE OF ENERGY AS INTENSITY OF EXERCISE AND OVERALL FITNESS CHANGE

23

Fuel Utilization: Muscle Glycogen Demand Increases with Intensity Lower-intensity exercise

- High lipid (fat) use
- Higher-intensity exercise
 - High muscle glycogen use
 - High plasma glucose use

Romijn JA, et la. Am J Physiol. 1993;265:E380-91; van loon LJ, et al. J Physiol. 2001;536:295-304.

PEAK TID Performance in

KEY POINT #7 INSULIN SENSITIVITY INCREASES WITH FITNESS

KEY POINT #8 COOLDOWN MINIMIZES INCREASE IN GLUCOSE LEVELS DUE TO MULTIPLE MECHANISMS

27

Cool Down Can Attenuate Hyperglycemia Risk After Vigorous Exercise

- Counter-regulatory hormones and high lactate levels may increase blood glucose levels in early recovery
- Hyperglycemia in early recovery can be attenuated by a prolonged passive cool down at a moderate intensity (30–50% VO₂ max)
- Monitoring of glucose is essential

JDRFPEAK
TID Performance in
Energies and Knowledge

KEY POINT #9 SHORT TERM RISK OF HYPOGLYCEMIA DURING EXERCISE IS INCREASED BY RECENT HYPOGLYCEMIA AND RECENT EXERCISE

Summary

- 1. Different forms of exercise have different effects
- 2. Physiologic mechanisms maintain tight glucose levels during exercise in the absence of diabetes
- 3. Exercise in T1D leads to glucose imbalance due to altered physiologic responses
- 4. Glucose uptake is high due to both insulin action and muscle contraction
- 5. Exercise has both immediate and delayed effects on blood glucose
- 6. The body adjusts its source of energy as intensity of exercise and overall fitness change
- 7. Insulin sensitivity increases with fitness
- 8. Cooldown minimizes increase in glucose levels due to multiple mechanisms
- 9. Short-term risk of hypoglycemia during exercise is increased by recent hypoglycemia and recent exercise

JDRFPEAK
TID Performance in Exercise and Knowledge